top of page

J. McBurney-Lin, G. Vargova, M. Garad, E. Zagha, and H. Yang (2022). The locus coeruleus mediates behavioral flexibility.

Cell Reports 41, 111534. 

M. Megemont*, J. McBurney-Lin*, H. Yang (2022) Pupil diameter is not an accurate real-time readout of locus coeruleus activity. Elife 11:1–17.

E. Zagha#, J.C. Erlich, S. Lee, G. Lur, D.H. O’Connor, N.A. Steinmetz, C. Stringer, H. Yang# (2022) The importance of accounting for movement when relating neuronal activity to sensory and cognitive processes. Journal of Neuroscience 

H. Yang#, B.A. Bari, J.Y. Cohen, D.H. O'Connor# (2021) Locus coeruleus spiking differently correlates with S1 cortex activity and pupil diameter in a tactile detection task. Elife 10, 1–14.  # co-corresponding

J. McBurney-Lin*, Y. Sun*, L. Tortorelli, Q.A. Nguyen, S. Haga-Yamanaka, H. Yang (2020) Bidirectional pharmacological perturbations of the noradrenergic system differentially affect tactile detection. Neuropharmacology 174:108151

J. McBurney-Lin*, J. Lu*, Y. Zuo#, H. Yang# (2019) Locus coeruleus-norepinephrine modulation of sensory processing and perception: a focused review. Neuroscience and Biobehavioral Reviews 105:190-199 PDF

K.S. Severson, D. Xu, H. Yang, D.H. O'Connor (2019) Coding of whisker motion across the mouse face. Elife 8:1-23


Before 2016:

S.E. Kwon, H. Yang, G. Minamisawa, D.H. O’Connor (2016) Propagation of sensory and decision-related activity in a cortical feedback loop during touch perception. Nature Neuroscience 19(9): 1243-1249


H. Yang*, S.E. Kwon*, K.S. Severson, D.H. O’Connor (2016) Origins of choice-related activity in mouse somatosensory cortex. Nature Neuroscience 19(1):127-134  

H. Yang & D.H. O’Connor (2014) Cortical adaptation and tactile perception. Nature Neuroscience 17, 1434-1436

H. Yang, W.L. Shew, R. Roy, D. Plenz (2014) Peak variability and optimal performance in cortical networks at criticality. Criticality in Neural Systems, Wiley-VCH


S. Yu, H. Yang, O. Shriki, D. Plenz (2014) Critical exponents, universality class, and thermodynamic ‘temperature’ of the brain. Criticality in Neural Systems, Wiley-VCH


S. Yu*, A. Klaus*, H. Yang, D. Plenz (2014) Scale-Invariant Neuronal Avalanche Dynamics and the Cut-off in Size Distributions. PLOS one 9(6): e99761


S. Yu*, H. Yang*, O. Shriki, D. Plenz (2013) Universal organization of resting brain activity at the thermodynamic critical point. Frontiers in Systems Neuroscience 7:1-17


H. Yang, W.L. Shew, R. Roy, D. Plenz (2012) Maximal variability of phase synchrony in cortical networks with neuronal avalanches. Journal of Neuroscience 32(3):1061-1072


S. Yu, H. Yang, H. Nakahara, G. Santos, D. Nikolić, D. Plenz (2011) Higher-Order Interactions characterized in Cortical Activity. Journal of Neuroscience 31(48):17514-17526


D. Plenz, C. Stewart, W.L. Shew, H. Yang, A. Klaus (2011) Multi-electrode array recordings of neuronal avalanches in organotypic cultures. Journal of Visualized Experiments (54), e2949


W.L. Shew*, H. Yang*, S. Yu, R. Roy, D. Plenz (2011) Information capacity and transmission are maximized in balanced cortical networks with neuronal avalanches. Journal of Neuroscience 31(1): 55-63


W.L. Shew, H. Yang, T. Petermann, R. Roy, D. Plenz (2009) Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. Journal of Neuroscience 29(49): 15595-15600


bottom of page